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I. INTRODUCTION 
 

In the framework of Enestrom-Kakeya theorem([4],[5]) which states that “all the zeros of a polynomial 
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II. MAIN RESULTS 
Unfortunatelely, there are various mistakes in the proofs of these theorems and the bounds obtained for the 

moduli of the zeros are not correct. In this paper we give the correct bounds for the zeros of the polynomials in 

the above mentioned theorems and prove 
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    For 1,0   , we get the following result of Gardner and Sheilds [1] from Theorem 1. 

Corollary 2: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  where for some R>0, 

,0 nk   

             k

k

k

k aRaRaRaRa  



1

1

2

2

10 .........0  

                       n

n

n

n

k

k aRaRaR  







1

1

1

1 ...... , 

and 
2

arg


 ja  for nj 1 and for some real  and  . Then for 10   the number of 

zeros of P(z) in Rz  is less than  

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Gulzar * et al., 6(9): September, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [349] 

                                   

0

log
1

log

1

a

M



 

where  

          cos2)sincos1( 1

0

 k

k RaRaM  

                    .sin2)sincos1(
1

0

11






 
n

j

j

j

n

n RaRa   

Theorem 2: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  where 
jja )Re( and jja )Im(  for 

nj 0 . Suppose that for some R>0, ,0,10,10 nk    

               
k

k

k

k RRRR   



1

1

2

2

10 .........0  

                       
n

n

n

n

k

k RRRR  1

1

1

1

1 )(...... 







  . 

Then for 10   the number of zeros of P(z) in Rz  is less than  

                                   

0

log
1

log

1

a

M



 

where 

         
n

nn

n

nn

k

k RRRRRM )()(2)(2 11

000   
   

                     



n

j

j

j R
0

12     . 

Taking  R=1 in Theorem 2, we get the following  

Corollary 3: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  where 
jja )Re( and jja )Im(  for 

nj 0 . Suppose that for some ,0,10,10 nk    

               kk   1210 .........0  

                       nnk  )1(...... 11   . 

Then for 10   the number of zeros of P(z) in Rz  is less than  

                                   

0

log
1

log

1

a

M



 

where 

         )()(2)(2 000 nnnnkM      

                     



n

j

j

0

2     . 

  Taking 1,0   , we get the following  result of Gardner and Sheilds [1] from Theorem 2. 

Corollary 4: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  where 
jja )Re( and jja )Im(  for 

nj 0 . Suppose that for some R>0, ,0 nk   

               
k

k

k

k RRRR   



1

1

2

2

10 .........0  

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Gulzar * et al., 6(9): September, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [350] 

                       
n

n

n

n

k

k RRR   







1

1

1

1 ...... . 

Then for 10   the number of zeros of P(z) in Rz  is less than  

                                   

0

log
1

log

1

a

M



 

where 

         
11

00 )(2)   n

nn

k

k RRRM    



n

j

j

j R
0

12     . 

Theorem 3: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  where  

jja )Re( and jja )Im(  for nj 0 . Suppose that for some R>0,

10,10,10,10 21   and for some ,0,0 nlnk   

               
k

k

k

k RRRR   



1

1

2

2

101 .........0  

                       
n

n

n

n

k

k RRRR  1

1

1

1

1 )(...... 







   

and 

                 
l

l

l

l RRRR   



1

1

2

2

102 .........  

                       
n

n

n

n

l

l RRRR  1

1

1

1

1 )(...... 







  . 

     

Then for 10   the number of zeros of P(z) in the disc Rz  is less than  

                                   

0

log
1

log

1

a

M



 

where 

         
n

nn

n

nn

k

k RRRRRM )()(2)(2 11

0010   
 

                  
n

nn

n

nn

l

l RRRRR )()(2)(2 11

0020   
.     
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     For other different values of the parameters , we get many other interesting results from the above results. 

 

III. LEMMAS 
For the proof s of the above results, we make use of the following lemma which 

 is due to Govil and Rahman [2]: 
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That proves theorem 1. 

 

 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Gulzar * et al., 6(9): September, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [353] 

Proof of Theorem 2: Consider the polynomial 
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That proves theorem 2. 
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Proof of Theorem 3: Consider the polynomial 
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Since the zeros of P(z) are also the zeros of F(z), it follows that the number of zeros of P(z) in 
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That proves theorem 3. 
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